dachar Documentation
Release 0.1.0

Elle Smith

Jan 12, 2022

9

dachar (pron. ‘“day-car”)

1.1 Features.
Characterising

2.1 Scanning
2.2 Analysing.
2.3 Proposing Fixes . . .
24 Processing Fixes . . .

Adding to elasticsearch

CONTENTS:

3.1 Cloning anindeX i L i e e e e e e e e e e e e e
3.2 Creatinganempty index e e e
3.3 DeletinganindeX L e e e e e e e e e e e e e
3.4 Populating an index from a local jsonstore L. L L
3.5 Adding one document to an existingindex oL Lo oo
Credits

Installation

5.1 Stablerelease e e e e
52 FromsSOUICES v v v v v it it e e e e e e e e e e e e e e e e e
Usage

Contributing

7.1 Types of Contributions
7.2 Pull Request Guidelines

73 Tips..........
74 Deploying
Credits
8.1 Developers
8.2 Contributors
History

10 Indices and tables

—

AN N O Lt Lt AW W W W

el

11

13
13
14
15
15

17
17
17

19

21

CHAPTER
ONE

DACHAR (PRON. “DAY-CAR”)

The “dachar” package (pronounced “day-car”, like René Descartes, a founder of modern science and philosophy) is a
python library used to capture and analyse the character of scientific data sets. We typically focus on data sets held in
the Earth System Grid Federation (ESGF) catalogues.

ESGF data sets are usually defined by the following characteristics:
* an identifier (string) that consists of an ordered set of facet values with a version identifier
* asingle 2D or 3D geophysical variable over multiple time steps
* represented in one or more NetCDF files
Examples ESGF data sets are:
¢ CMIP5: cmip5.outputl.MPI-M.MPI-ESM-LR.decadal1995.mon.land.Lmon.r5ilpl.v20120529

¢« CORDEX: cordex.output.AFR-44.DMI.ECMWF-ERAINT.evaluation.r1ilpl.HIRHAM5.v2.day.uas.
v20140804

¢ Free software: BSD

* Documentation: https://dachar.readthedocs.io.

1.1 Features

There are three main stages to the characterisation process:
1. Scan: Scan all data sets and write a character file (JSON).

2. Analysis: Define populations of data sets (that might be processed together) and analyse each population to
identify irregularities when comparing with other members of the population. Write the results of the analysis
(JSON).

3. Define Fixes: Suggest fixes required to individual data sets to overcome the irregularities. Write the required
fixes to a new set of files (JSON).

See below for using the cli to scan, analyse, propose fixes and process fixes. Character, analysis, fix and fix proposal
records are stored on elasticsearch indices. Creating, deleting and writing to indices is described below. The elastic api
token must be set in etc/roocs.ini in order to do these actions.

https://pypi.python.org/pypi/dachar
https://github.com/roocs/dachar/actions
https://dachar.readthedocs.io/en/latest/?badge=latest
https://dachar.readthedocs.io

dachar Documentation, Release 0.1.0

2 Chapter 1. dachar (pron. “day-car”)

CHAPTER
TWO

CHARACTERISING

2.1 Scanning

$ dachar scan <project> -1 <location>

e.g. dachar scan c3s-cmip6 -1 ceda. This will scan all c3s-cmip6 datasets.

There are 2 different scanning modes available - either quick or full. Use -m full or -m quick. Quick scans can be
overwritten with full scans using -m full-force.

Use dachar scan -h to see the options available for scanning specific datasets.

2.2 Analysing

To analyse populations of datasets. The sample id identifies the population to analyse.

$ dachar analyse -s <sample-id> <project> -1 <location>

Using the flag -f will overwrite existing analysis records for the sample id.

2.3 Proposing Fixes

Analysis will automatically prpose fixes if any are found, however, if fixes are identified by another source they can be
proposed.

There are different way of proposing fixes

1. By providing a JSON file of the fix. More than one JSON file can be provided.

$ dachar propose-fixes -f <json_file>,<json_file2>,<json_file3>

2. By providing a JSON template and a list of datasets that the fix should be proposed for.

$ dachar propose-fixes -t <json_template> -d <dataset_list>

See the directory tests/test_fixes/decadal_fixes for examples.

Note that if CMIPG6 fixes are intended to be used for CDS datasets - the ds ids for the datasets must start with c3s-cmip6
instead of CMIP6.

dachar Documentation, Release 0.1.0

2.4 Processing Fixes

To publish or reject proposed fixes use:

$ dachar process-fixes -a process

This can also be used as:

$ dachar process-fixes -a process -d <dataset-id>,<dataset-id>

to process specific fixes.

To withdraw existing fixes, use:

$ dachar process-fixes -a withdraw -d <dataset-id>,<dataset-id>

To publish all fixes use:

$ dachar process-fixes -a publish-all

To reject all fixes use:

$ dachar process-fixes -a reject-all

In this case you will be prompted to give a reason for rejection. This will be applied to all fixes.

Chapter 2. Characterising

CHAPTER
THREE

ADDING TO ELASTICSEARCH

When a new version of the index is being created:

1. A new index must be created with new date. This can be done by creating an empty index or cloning the old one.
Creating an empty index will just make a new index with the date of creation and update the alias to point to it if
desired. Cloning creates a new index with the date of creation, fills it with all documents from the old index and
updates the alias to point to it if desired.

2. It can then be populated either with all documents in local store or one document at a time.

3.1 Cloning an index

To create an index with today’s date and populate it with all documents from another index.

$ python dachar/index/cli.py clone -i <index-to-create> -c <index-to-clone>

e.g. python dachar/index/cli.py clone -i fix -c roocs-fix-2020-12-21

To update the alias to point to this new index, provide the -u flag.

$ python dachar/index/cli.py clone -i <index-to-create> -c <index-to-clone> -u

3.2 Creating an empty index

To create an empty index with today’s date.

$ python dachar/index/cli.py create -i <index-to-create>

e.g. python dachar/index/cli.py create -i fix

To update the alias to point to this new index, provide the -u flag.

$ python dachar/index/cli.py create -i <index-to-create> -u

dachar Documentation, Release 0.1.0

3.3 Deleting an index

To delete an index.

$ python dachar/index/cli.py delete -i <index-to-delete>

e.g. python dachar/index/cli.py delete -i roocs-fix-2020-12-21

3.4 Populating an index from a local json store

Popluate an elasticsearch index with the contents of a local store.

$ python dachar/index/cli.py populate -s <store> -i <index-to-populate>

Store must be one of fix, fix-proposal, analysis or character.

e.g. python dachar/index/cli.py populate -s fix -i roocs-fix-2020-12-21

3.5 Adding one document to an existing index

To add one document from any file path to a store

$ python dachar/index/cli.py add-document -f <file-path> -d <drs-id> -i <index>

drs-id is what the id is called in the index i.e. either dataset_id (for fix, character and fix proposal store) or sample_id
(for the analysis store)

e.g. python dachar/index/cli.py add-document -f /path/to/doc.json -d c3s-cmip6.ScenarioMIP.
INM.INM-CM5-0.ssp245.rlilplfl.Amon.rlds.grl.v20190619 -i roocs-£fix-2020-12-21

6 Chapter 3. Adding to elasticsearch

CHAPTER
FOUR

CREDITS

This package was created with Cookiecutter and the cedadev/cookiecutter-pypackage project template.
¢ Cookiecutter: https://github.com/audreyr/cookiecutter

* cookiecutter-pypackage: https://github.com/cedadev/cookiecutter-pypackage

https://github.com/audreyr/cookiecutter
https://github.com/cedadev/cookiecutter-pypackage

dachar Documentation, Release 0.1.0

8 Chapter 4. Credits

CHAPTER
FIVE

INSTALLATION

5.1 Stable release

To install dachar, run this command in your terminal:

$ pip install dachar

This is the preferred method to install dachar, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

5.2 From sources

The sources for dachar can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/ellesmith88/dachar

Or download the tarball:

$ curl -OL https://github.com/ellesmith88/dachar/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/ellesmith88/dachar
https://github.com/ellesmith88/dachar/tarball/master

dachar Documentation, Release 0.1.0

10 Chapter 5. Installation

CHAPTER
SIX

USAGE

To use dachar in a project:

import dachar

For information on the configuration options available in daops, see: https://roocs-
—utils.readthedocs.io/en/latest/configuration.html#dachar

11

dachar Documentation, Release 0.1.0

12 Chapter 6. Usage

CHAPTER
SEVEN

CONTRIBUTING

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

7.1 Types of Contributions

7.1.1 Report Bugs

Report bugs at https://github.com/ellesmith88/dachar/issues.
If you are reporting a bug, please include:
* Your operating system name and version.
* Any details about your local setup that might be helpful in troubleshooting.

* Detailed steps to reproduce the bug.

7.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants to
implement it.

7.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

7.1.4 Write Documentation

dachar could always use more documentation, whether as part of the official dachar docs, in docstrings, or even on the
web in blog posts, articles, and such.

13

https://github.com/ellesmith88/dachar/issues

dachar Documentation, Release 0.1.0

7.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/ellesmith88/dachar/issues.

If you are proposing a feature:

» Explain in detail how it would work.

» Keep the scope as narrow as possible, to make it easier to implement.

* Remember that this is a volunteer-driven project, and that contributions are welcome :)

7.1.6 Get Started!

Ready to contribute? Here’s how to set up dachar for local development.

#. Fork the dachar repo on GitHub. #.

Clone your fork locally:

$ git clone git@ github.com:your_name_here/dachar.git

. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up

your fork for local development:

$ mkvirtualenv dachar $ cd dachar/ $ python setup.py develop
Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature
Now you can make your changes locally.

When you are done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 dachar tests $ python setup.py test or py.test $ tox
To get flake8 and tox, just pip install them into your virtualenv.
Commit your changes and push your branch to GitHub:

$ git add . $ git commit -m “Your detailed description of your changes.” $ git push origin name-of-
your-bugfix-or-feature

Submit a pull request through the GitHub website.

7.2 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1.
2.

The pull request should include tests.

If the pull request adds functionality, the docs should be updated. Put your new functionality into a function with
a docstring, and add the feature to the list in README.md.

The pull request should work for Python 2.7, 3.4, 3.5 and 3.6, and for PyPy. Check https://travis-ci.org/
ellesmith88/dachar/pull_requests and make sure that the tests pass for all supported Python versions.

14

Chapter 7. Contributing

https://github.com/ellesmith88/dachar/issues
mailto:git@github.com
https://travis-ci.org/ellesmith88/dachar/pull_requests
https://travis-ci.org/ellesmith88/dachar/pull_requests

dachar Documentation, Release 0.1.0

7.3 Tips

To run a subset of tests:

$ py.test tests.test_dachar

7.4 Deploying

A reminder for the maintainers on how to deploy. Make sure all your changes are committed (including an entry in
HISTORY.md). Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

7.3. Tips 15

dachar Documentation, Release 0.1.0

16 Chapter 7. Contributing

CHAPTER
EIGHT

CREDITS

8.1 Developers

¢ Elle Smith eleanor.smith @stfc.ac.uk

8.2 Contributors

None yet. Why not be the first?

17

mailto:eleanor.smith@stfc.ac.uk

dachar Documentation, Release 0.1.0

18 Chapter 8. Credits

CHAPTER
NINE

HISTORY

0.1.0 (2020-03-26)

* First release on PyPlL

19

dachar Documentation, Release 0.1.0

20 Chapter 9. History

CHAPTER
TEN

INDICES AND TABLES

* genindex
* modindex

¢ search

21

	dachar (pron. “day-car”)
	Features

	Characterising
	Scanning
	Analysing
	Proposing Fixes
	Processing Fixes

	Adding to elasticsearch
	Cloning an index
	Creating an empty index
	Deleting an index
	Populating an index from a local json store
	Adding one document to an existing index

	Credits
	Installation
	Stable release
	From sources

	Usage
	Contributing
	Types of Contributions
	Report Bugs
	Fix Bugs
	Implement Features
	Write Documentation
	Submit Feedback
	Get Started!

	Pull Request Guidelines
	Tips
	Deploying

	Credits
	Developers
	Contributors

	History
	Indices and tables

