

Welcome to dachar’s documentation!

Contents:

	dachar (pron. “day-car”)
	Features

	Characterising
	Scanning

	Analysing

	Proposing Fixes

	Processing Fixes

	Adding to elasticsearch
	Cloning an index

	Creating an empty index

	Deleting an index

	Populating an index from a local json store

	Adding one document to an existing index

	Credits

	Installation
	Stable release

	From sources

	Usage

	Contributing
	Types of Contributions

	Pull Request Guidelines

	Tips

	Deploying

	Credits
	Developers

	Contributors

	History

Indices and tables

	Index

	Module Index

	Search Page

dachar (pron. “day-car”)

[image: Pypi]
 [https://pypi.python.org/pypi/dachar][image: Build Status]
 [https://github.com/roocs/dachar/actions][image: Documentation]
 [https://dachar.readthedocs.io/en/latest/?badge=latest]The “dachar” package (pronounced “day-car”, like René Descartes, a founder of modern science and philosophy)
is a python library used to capture and analyse the character of scientific data sets. We typically focus on data sets held in the
Earth System Grid Federation (ESGF) catalogues.

ESGF data sets are usually defined by the following characteristics:

	an identifier (string) that consists of an ordered set of facet values with a version identifier

	a single 2D or 3D geophysical variable over multiple time steps

	represented in one or more NetCDF files

Examples ESGF data sets are:

	CMIP5: cmip5.output1.MPI-M.MPI-ESM-LR.decadal1995.mon.land.Lmon.r5i1p1.v20120529

	CORDEX: cordex.output.AFR-44.DMI.ECMWF-ERAINT.evaluation.r1i1p1.HIRHAM5.v2.day.uas.v20140804

	Free software: BSD

	Documentation: https://dachar.readthedocs.io.

Features

There are three main stages to the characterisation process:

	Scan: Scan all data sets and write a character file (JSON).

	Analysis: Define populations of data sets (that might be processed together)
and analyse each population to identify irregularities when comparing
with other members of the population. Write the results of the analysis (JSON).

	Define Fixes: Suggest fixes required to individual data sets to overcome the
irregularities. Write the required fixes to a new set of files (JSON).

See below for using the cli to scan, analyse, propose fixes and process fixes.
Character, analysis, fix and fix proposal records are stored on elasticsearch indices.
Creating, deleting and writing to indices is described below. The elastic api token must be set in etc/roocs.ini in order to do these actions.

Characterising

Scanning

$ dachar scan <project> -l <location>

e.g. dachar scan c3s-cmip6 -l ceda. This will scan all c3s-cmip6 datasets.

There are 2 different scanning modes available - either quick or full. Use -m full or -m quick. Quick scans can be overwritten with full scans using -m full-force.

Use dachar scan -h to see the options available for scanning specific datasets.

Analysing

To analyse populations of datasets. The sample id identifies the population to analyse.

$ dachar analyse -s <sample-id> <project> -l <location>

Using the flag -f will overwrite existing analysis records for the sample id.

Proposing Fixes

Analysis will automatically prpose fixes if any are found, however, if fixes are identified by another source they can be proposed.

There are different way of proposing fixes

	By providing a JSON file of the fix. More than one JSON file can be provided.

$ dachar propose-fixes -f <json_file>,<json_file2>,<json_file3>

	By providing a JSON template and a list of datasets that the fix should be proposed for.

$ dachar propose-fixes -t <json_template> -d <dataset_list>

See the directory tests/test_fixes/decadal_fixes for examples.

Note that if CMIP6 fixes are intended to be used for CDS datasets - the ds ids for the datasets must start with c3s-cmip6 instead of CMIP6.

Processing Fixes

To publish or reject proposed fixes use:

$ dachar process-fixes -a process

This can also be used as:

$ dachar process-fixes -a process -d <dataset-id>,<dataset-id>

to process specific fixes.

To withdraw existing fixes, use:

$ dachar process-fixes -a withdraw -d <dataset-id>,<dataset-id>

To publish all fixes use:

$ dachar process-fixes -a publish-all

To reject all fixes use:

$ dachar process-fixes -a reject-all

In this case you will be prompted to give a reason for rejection. This will be applied to all fixes.

Adding to elasticsearch

When a new version of the index is being created:

	A new index must be created with new date. This can be done by creating an empty index or cloning the old one.
Creating an empty index will just make a new index with the date of creation and update the alias to point to it if desired.
Cloning creates a new index with the date of creation, fills it with all documents from the old index and updates the alias to point to it if desired.

	It can then be populated either with all documents in local store or one document at a time.

Cloning an index

To create an index with today’s date and populate it with all documents from another index.

$ python dachar/index/cli.py clone -i <index-to-create> -c <index-to-clone>

e.g. python dachar/index/cli.py clone -i fix -c roocs-fix-2020-12-21

To update the alias to point to this new index, provide the -u flag.

$ python dachar/index/cli.py clone -i <index-to-create> -c <index-to-clone> -u

Creating an empty index

To create an empty index with today’s date.

$ python dachar/index/cli.py create -i <index-to-create>

e.g. python dachar/index/cli.py create -i fix

To update the alias to point to this new index, provide the -u flag.

$ python dachar/index/cli.py create -i <index-to-create> -u

Deleting an index

To delete an index.

$ python dachar/index/cli.py delete -i <index-to-delete>

e.g. python dachar/index/cli.py delete -i roocs-fix-2020-12-21

Populating an index from a local json store

Popluate an elasticsearch index with the contents of a local store.

$ python dachar/index/cli.py populate -s <store> -i <index-to-populate>

Store must be one of fix, fix-proposal, analysis or character.

e.g. python dachar/index/cli.py populate -s fix -i roocs-fix-2020-12-21

Adding one document to an existing index

To add one document from any file path to a store

$ python dachar/index/cli.py add-document -f <file-path> -d <drs-id> -i <index>

drs-id is what the id is called in the index i.e. either dataset_id (for fix, character and fix proposal store) or sample_id (for the analysis store)

e.g. python dachar/index/cli.py add-document -f /path/to/doc.json -d c3s-cmip6.ScenarioMIP.INM.INM-CM5-0.ssp245.r1i1p1f1.Amon.rlds.gr1.v20190619 -i roocs-fix-2020-12-21

Credits

This package was created with Cookiecutter and the cedadev/cookiecutter-pypackage project template.

	Cookiecutter: https://github.com/audreyr/cookiecutter

	cookiecutter-pypackage: https://github.com/cedadev/cookiecutter-pypackage

Installation

Stable release

To install dachar, run this command in your terminal:

$ pip install dachar

This is the preferred method to install dachar, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for dachar can be downloaded from the Github repo [https://github.com/ellesmith88/dachar].

You can either clone the public repository:

$ git clone git://github.com/ellesmith88/dachar

Or download the tarball [https://github.com/ellesmith88/dachar/tarball/master]:

$ curl -OL https://github.com/ellesmith88/dachar/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use dachar in a project:

import dachar

For information on the configuration options available in daops, see: https://roocs-utils.readthedocs.io/en/latest/configuration.html#dachar

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/ellesmith88/dachar/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

dachar could always use more documentation, whether as part of the
official dachar docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/ellesmith88/dachar/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up dachar for local development.

#. Fork the dachar repo on GitHub.
#.

Clone your fork locally:

$ git clone git@github.com:your_name_here/dachar.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv dachar
$ cd dachar/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you are done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 dachar tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m “Your detailed description of your changes.”
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.md.

	The pull request should work for Python 2.7, 3.4, 3.5 and 3.6, and for PyPy. Check
https://travis-ci.org/ellesmith88/dachar/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_dachar

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.md).
Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

Credits

Developers

	Elle Smith eleanor.smith@stfc.ac.uk

Contributors

None yet. Why not be the first?

History

0.1.0 (2020-03-26)

	First release on PyPI.

Index

Roocs data stores

Roocs consists of stores which it uses to identify and apply fixes to datasets. This notebook demonstrates the purpose of and how to interact with the Character store and the Fix store.

The Character store contains information about the ‘character’ of datasets that have been scanned. This is used in the identification of fixes.

The Fix store keeps track of these fixes. Each document corresponds to a specific dataset and details the fixes which are to be applied to it before an operation is applied to it.

The workflow from scanning datasets to applying fixes is shown below:

[image: image.png]

	Datasets are scanned and the documents are indexed in the Character Store.

	The analysis is run over samples (collections of datasets). The inputs and results of this are recorded in the Analysis Store.

	Fix proposals are generated based on any anomalies identified in the analysis of the sample. These are stored in the Fix Proposal Store.

	The fixes are processed - we decide whether a fix is published to the Fix Store or rejected. If a fix is published it will be applied when a dataset is used in a process (subset, average etc.).

Setting up elasticsearch

[]:

import dachar

char_store = dachar.utils.get_stores.get_dc_store('elasticsearch')
fix_store = dachar.utils.get_stores.get_fix_store('elasticsearch')

Working with the character store

[]:

import pprint

Use get to get a document by id - the id used is the drs id
An example drs_id would be cmip5.output1.CCCma.CanCM4.rcp45.mon.ocean.Omon.r1i1p1.latest.zostoga

Use the get function to return the contents of the document
doc = char_store.get('cmip5.output1.CCCma.CanCM4.rcp45.mon.ocean.Omon.r1i1p1.latest.zostoga')
print('doc=')
pprint.pprint(doc)

To get all documents
all = [_ for _ in char_store.get_all()]
print(len(all))

To get all drs_ids
[_ for _ in char_store.get_all_ids()]

The search function allows you to search stores and takes inputs to help you refine your search. - term - the term to search. - exact - if false searches for the term as a substring. This only works with case insesitivity for one word search terms. It defaults to false unless searching a number field (which must have exact=True). - match_ids - searches drs ids as well if True. Defaults to true. - fields - the fields to search. For elasticsearch a nested field must be specified or it will not be
searched. Defaults to None.

[]:

Here are some examples of using the search function

print('Successful searches')
These searches will return a result
res = char_store.search("noleap", exact=True, fields=["coordinates.time.calendar"])
print('number of results found = ', len(res))

The search is changed to exact = True as searching a number field
res = char_store.search(1, exact=True, fields=["data.rank"])
print('number of results found = ', len(res))

res = char_store.search("gregorian", exact=False, fields=["coordinates.time.calendar"])
print('number of results found = ', len(res))

in documents the phrase is Max Planck - this search is case insensitive
res = char_store.search("max", exact=False, fields=["global_attrs.institution"])
print('number of results found = ', len(res))

This works as a wildcard match as the correct case is used
res = char_store.search("Max Pla", exact=False, fields=["global_attrs.institution"])
print('number of results found = ', len(res))

example of searching dataset_id
res = char_store.search("MOHC", match_ids=True, exact=False)
print('number of results found = ', len(res))

[]:

print('Failed searches')
This searches will not return a result

Fails because the field has not been specified - need to specify fields=["coordinates.time.calendar"]
res = char_store.search("noleap", exact=True, fields=["coordinates"])
print('number of results found = ', len(res))

Trying to do a wildcard number search - returns 0 because wildcard matching not available for number fields so I don't find what I'm looking for.
res = char_store.search(69, exact=False, fields=["data.min"])
print('number of results found = ', len(res))

Fails as trying to do a wildcard search on a phrase without using the correct case
res = char_store.search("max pla", exact=False, fields=["global_attrs.institution"])
print('number of results found = ', len(res))

Working with the fix store

You can interact with the fix store in the same way:

[]:

Use the get function to return the contents of the document
doc = fix_store.get('cmip5.output1.INM.inmcm4.rcp45.mon.ocean.Omon.r1i1p1.latest.zostoga')
print('doc=')
pprint.pprint(doc)

To get all documents
all = [_ for _ in fix_store.get_all()]
print('number of documents = ', len(all))

To get all drs_ids
[print(_) for _ in fix_store.get_all_ids()]

A search for all coord fixes
res = fix_store.search("coord_fixes", fields=["fixes.category"])
print('search result=')
pprint.pprint(res)

[]:

 nav.xhtml

 Table of Contents

 		
 Welcome to dachar’s documentation!

 		
 dachar (pron. “day-car”)

 		
 Features

 		
 Characterising

 		
 Scanning

 		
 Analysing

 		
 Proposing Fixes

 		
 Processing Fixes

 		
 Adding to elasticsearch

 		
 Cloning an index

 		
 Creating an empty index

 		
 Deleting an index

 		
 Populating an index from a local json store

 		
 Adding one document to an existing index

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Developers

 		
 Contributors

 		
 History

_static/plus.png

_static/file.png

_static/minus.png

_static/roocs.png
LE

